
The DoD Source for Software Technology Information.

Vol. 3- No. 3
Software Testing

Part 2

Software

Testing Software Based Systems:
The Final Frontier
by Thomas Drake, Coastal Research & Technology Inc. (CRTI)

Where are We? Setting the StageIn This Issue:

Testing Software Based Systems:
The Final Frontier 1

Survivability as a Component
of Software Metrics 5

Using Models for Test
Generation and Analysis 10

Task-Based Software
Testing 17

Thread-Based Integration
Testing: Lessons Learned From
an Iterative Approach 20

About this newsletter 22

Software Testing
Resources on the WWW.... 23

DACS Products
Order Form Insert

Read additional Software
Testing materials at:

www.dacs.dtic.mil/
awareness/newsletters/

listing.shtml

Series: Part 2
Note: This is the second in a series of newsletters devoted to Software Testing.

Testing

The increasing cost and complexity
of software development is leading
software organizations in the
industry to search for new ways
through process methodology and
tools for improving the quality of
the software they develop and
deliver. However, the overall
process is only as strong as its
weakest link. This critical link is
software quality engineering as an
activity and as a process. Testing is
the key instrument for making this
process happen.

Software testing has traditionally
been viewed by many as a necessary
evil, dreaded by both software
developers and management alike,
and not as an integrated and parallel
activity staged across the entire
software development life cycle.
One thing is clear - by definition,
testing is still considered by many as
only a negative step usually

occurring at the end of the software
development process while others
now view testing as a “competitive
edge” practice and strategy.

The best that can happen under the
former perception is that no
problems are detected in the
software and that none exist for
detection until after delivery. We
know this is not the case in the real
word of application development. In
reality, it is testing that finds
problems which trigger a feedback
loop to development for resolution
and retesting to make sure the fix
works and has not created other
problems. All of this activity
invariably happens under extreme
time constraints and with significant
management visibility. But it is the
kind of visibility that no one usually
wants because everyone else above
in the development food chain could
slip.

continued on page 2

Welcome
Thank you for your interest in the Software Tech News.Past issues are archived on the Data & Analysis Center for Software's Website at: http://www.dacs.dtic.mil/.

http://www.dacs.dtic.mil/
http://www.dtic.mil/
http://www.disa.mil/
http://www.defenselink.mil/
http://www.dacs.dtic.mil/awareness/newsletters/listing.shtml

STN2

The Real World of

Software Development -

A Sobering Perspective

The following scenario is not
unusual and represents a composite
perspective gleaned from this
writer’s 10 years of experience in
the information technology industry
and DoD environments.

A software test specialist is assigned
to work on a multimillion dollar
effort to develop a new system. The
test specialist knows that the
completion date for the program is
unrealistic, given the scope and
complexity of the development
effort.

As a result of testing, the test
specialist knows that there are some
real serious technical difficulties
impacting the software system’s
interface performance with a very
large relational database system, as
well as numerous bugs in the query
routines for the graphical user
interface.

After months of keeping growing
concerns private, the test specialist
decides to share these concerns with
a fellow colleague. These concerns
were not raised earlier because
attempts to do so by others with
management had resulted in
management telling them not to rock
the boat. They had learned that
viewpoints perceived as negative
were unwelcome and not wanted.
Fellow colleagues had stopped
giving feedback to management
because they now felt their views
would be ignored and were afraid
that additional feedback of this type
would affect their careers. So this
test specialist told management what
we thought they wanted to hear, that
there were some minor problems

with the software but nothing that
could not be resolved in time for the
projected delivery date.

However, as the release date loomed
ever closer, it was becoming
obvious that the software was overly
complex, had a lot of functional
problems, and most importantly,
would not operate as promised at the
point of delivery. The test specialist
knew it would be a disaster if the
system was delivered as scheduled.

The system went through a
development test and evaluation
(DT&E) period that was aborted,
and the program was subsequently
canceled by the acquisition
organization after multiple tens of
millions of dollars had been spent
on development. The test
organization was later disbanded
because it was perceived as part of
the problem.

Test professionals who find
themselves in similar circumstances
are faced with a difficult choice.
What should this test specialist have
done?

The Association for Computing
Machinery (ACM) code of ethics
states the following:

“The honest computing

professional will not make

deliberately false or deceptive

claims about a system or

system design, but will instead

provide full disclosure of all

pertinent system limitations

and problems.”

And the biggest single obstacle is
cultural. Testing is not generally
viewed in our software development
environments as where the real
action is. The general perception is
still the following in many

development organizations - testers
are software developers who could
not make it and only real developers
become programmers. Testers, in
particular, are often regarded as
second class citizens and rewarded
accordingly. This often leads to high
turnover, junior level experience,
and no commitment to a
comprehensive test program on the
part of management.

However, becoming a good test
engineer requires a skill set at least
as equally complex as that of a good
software developer. And the
importance of testing is becoming
more and more relevant with the
dependencies we place on software
creating “consequential damages”
and legal quicksand when it does
not work as advertised. What does it
take?

Creating the Right

Environment - The

People Side of the

Equation

Senior managers within information
technology must create an
environment and foster a
professional climate in which their
test and development engineers are
encouraged to recognize and
respond positively within a software
development effort and where all
project tasking is rigorously and
regularly reviewed. It is the job of
the tester to “tell it like it is.”

We usually think of testing in
software development as something
we do when we run out of time or
after we have developed code.
However, the fundamental approach
as presented here focuses on testing
as a fully integrated but independent

Testing Software Based Systems: The Final Frontier
Continued from page 1

continued on page 3

STN 3

 “Software implementation is

a cozy bonfire, warm, bright,

a bustle of comforting

concrete activity. But beyond

the flames is an immense zone

of darkness. Testing is the

exploration of this darkness.”

- extracted from the
1992 Software Maintenance

Technology Reference Guide

activity with development that has a
lifecycle all its own, and that the
people, the process and the
appropriate automated technology
are crucial for the successful
delivery of the software based
system. Planning, managing,
executing, and documenting testing
as a key process activity during all
stages of development is an
incredibly difficult process. By
definition, it has to be
comprehensive. And finally, who
does the testing and the requisite
commitment to testing is perhaps as
important as the actual testing itself.

Software Quality

Engineering -

As a Discipline and

as a Practice

(Process and Product)

Software Quality Engineering is
composed of two primary activities -
process level quality which is
normally called quality assurance,
and product oriented quality that is
normally called testing. Process
level quality establishes the
techniques, procedures, and tools
that help promote, encourage,
facilitate, and create a software
development environment in which
efficient, optimized, acceptable, and
as fault-free as possible software
code is produced. Product level
quality focuses on ensuring that the
software delivered is as error-free as
possible, functionally sound, and
meets or exceeds the real user’s
needs. Testing is normally done as a
vehicle for finding errors in order to
get rid of them. This raises an
important point - then just what is
testing?

Common definitions for testing -
A Set of Testing Myths:

“Testing is the process of

demonstrating that defects are

not present in the application that

was developed.”

“Testing is the activity or process

which shows or demonstrates

that a program or system

performs all intended functions

correctly.”

“Testing is the activity of

establishing the necessary

‘confidence’ that a program or

system does what it is supposed

to do, based on the set of

requirements that the user has

specified.”

All of the above myths are very
common and still prevalent
definitions of testing. However,
there is something fundamentally
wrong with each of these myths.
The problem is this - each of these
myths takes a positive approach
towards testing. In other words, each
of these testing myths represents an

activity that proves that something
works.

However, it is very easy to prove
that something works but not so
easy to prove that it does not work!
In fact, if one were to use formal
logic, it is nearly impossible to
prove that defects are not present.
Just because a particular test does
not find a defect does not prove that
a defect is not present. What it does
mean is that the test did not find it.

These myths are still entrenched in
much of how we collectively view
testing and this mind-set sets us up
for failure even before we start
really testing!

So what is the real definition of
testing?

“Testing is the process of

executing a program/system

with the intent of finding

errors.”

The emphasis is on the
deliberate intent of finding
errors. This is much different
than simply proving that a
program or system works.
This definition of testing
comes from “The Art of

Software Testing” by
Glenford Myers. It was his
opinion that computer
software is one of the most

complex products to come out of the
human mind.

So why test in the first place? You
know you can’t find all of the bugs.
You know you can’t prove the code
is correct. And you know that you
will not win any popularity contests
finding bugs in the first place. So
why even bother testing when there
are all these constraints? The

continued on page 4

STN4

fundamental purpose of software
testing is to find problems in the
software. Finding problems and
having them fixed is the core of
what a test engineer does. A test
engineer should WANT to find as
many problems as possible and the
more serious the problems the
better. So it becomes critical that the
testing process is made as efficient
and as cost-effective as possible in
finding those software problems.
The primary axiom for the testing
equation within software
development is this:

“A test when executed that

reveals a problem in the software

is a success.”

The purpose of finding problems is
to get them fixed. The benefit is
code that is more reliable, more
robust, more stable, and more
closely matches what the real end-
user wanted or thought they asked
for in the first place! A tester must
take a destructive attitude toward the
code, knowing that this activity is,
in the end, constructive. Testing is a
negative activity conducted with the
explicit intent and purpose of
creating a stronger software product
and is operatively focused on the
“weak links” in the software. So if a
larger software quality engineering
process is established to prevent and
find errors, we can then change our
collective mind-set about how to
ensure the quality of the software
developed.

The other problem is that you will
really never have enough time to
test. We need to change our
understanding and use the testing
time we do have, by applying it to
the earlier phases of the software

Testing Software Based Systems: The Final Frontier
Continued from page 3

development life cycle. You need to
think about testing the first day you
think about the system. Rather then
viewing testing as something that
takes place after development, focus
instead on the testing of everything
as you go along to include the
concept of operations, the
requirements and specifications, the
design, the code, and of course, the
tests!

The Further Along You Are

In The Software

Development Life Cycle

The More It Costs To Test!

Lesson learned - just test early. Test
early and often. Test the design of
the system before you build any
pseudo-code. Test the specs before
you actually code. Review the code
during coding before you test the
code, and then finally execute actual
test cases. By doing the reviews and
the code-level analyses during all
phases of the development life cycle
you will find many, if not most of
the problems in the system before
the traditional testing period even
begins. These activities alone will
greatly improve the quality of the
delivered system.

Find out the cause of this effect,

Or rather say, the cause of this

defect, For this effect defective

comes by cause.

- Hamlet (with thanks to DeMarco)

About the Author

Mr. Drake is a software systems
quality specialist and management
and information technology
consultant for Coastal Research &
Technology Inc. (CRTI). He
currently leads and manages a U.S.
government agency-level Software

Engineering Knowledge Based
Center’s software quality
engineering initiative. As part of an
industry and government outreach/
partnership program, he holds
frequent seminars and tutorials
covering code analysis, software
metrics, Object-Oriented (OO)
analysis for C++ and Java, coding
practice, testing, best current
practices in software development,
the business case for software
engineering, software quality
engineering practices and principles,
quality and test architecture
development and deployment,
project management, organizational
dynamics and change management,
and the people side of information
technology. He is the principal
author of a chapter on “Metrics
Used for Object-Oriented Software
Quality” for a CRC Press Object
Technology Handbook published in
December of 1998. In addition, Mr.
Drake is the author of a theme
article entitled: “Measuring
Software Quality: A Case Study”
published in the November 1996
issue of IEEE Computer. Mr. Drake
is listed with the International
Who’s Who for Information
Technology for 1999, is a member
of IEEE and an affiliate member of
the IEEE Computer Society. He is
also a Certified Software Test
Engineer (CSTE) from the Quality
Assurance Institute (QAI).

Author Contact Information

Thomas A. Drake

Coastal Research & Technology Inc.
5063 Beatrice Way

Columbia, MD 21044
Phone: (301) 688-9440

Fax: (301) 688-9436
tadrake@earthlink.net

mailto:tadrake@earthlink.net
http://www.dacs.dtic.mil/

STN 5

Survivability as a Component of Software Metrics
by David L. Wells, Object Services and Consulting Inc. and
David E. Langworthy, Langworthy Associates

Introduction

Software metrics provide estimates
of software quality that are used to
determine where to spend additional
development testing resources or to
determine the suitability of software
for particular (often critical)
applications. Metrics have
traditionally focused on code quality.
However, the trend toward
constructing large, distributed
applications as a collection of
independent “services” interacting
across a software backplane (e.g.,
CORBA), makes the process of
configuring the application an
important part of the development
process. This affects the kinds of
software metrics required, since
perfect software, imperfectly
deployed, or deployed in such a way
that is vulnerable to failure or attack
is of no more value than imperfect
software that fails of its own accord.
This paper describes metrics we
developed [5] for measuring the
survivability of software systems
that can be applied to the more
general realm of software metrics.

The Importance of

Configurations

Service-based applications can have
many physical configurations that
provide the same (or approximately
the same) logical functionality using
identical services. Multiple
configurations are enabled by the
following:

• Clients and services may run on
different platforms in differing
combinations,

• Partial application failure (e.g., a
client running, service down) is
possible due to software or
environmental factors,

• Interfaces that hide
implementation details allow a
service to have multiple
implementations,

• Multiple objects to provide the
same or equivalent services,

• Services can fail because of
programming errors or because of
a failure of the underlying
resources (e.g., hosts or
networks),

• Connections between clients and
services are typically loose,
which makes it possible in
principle to change the
connections on the fly.

A truly useful metric for distributed,
service-based software must
measure both the quality of the
software itself (the traditional role)
and the quality of its configuration
vis a vis the underlying
infrastructure and the kinds of
threats to which the software and
infrastructure are subject. In the real
world, systems can fail for a variety
of reasons other than code and
specification errors (e.g., a virus
might corrupt the file system that
the software relies upon). Thus,
rather than ask simply whether the
specification and code are correct, it
is necessary to ask how likely it is
that the system to continue to
provide the desired functionality, or
failing this, something approaching
it. A survivable system [1,2] is one
in which actions can be taken to
reconfigure applications in the event
of partial failures to achieve
functionality approximating the
functionality of the original system.
The usefulness of a survivable
system can be judged in several
ways: how useful is what it is doing
now?; how useful is it likely to be in
the future?; if it breaks, can it be

repaired so that it can again do
something useful?

Overview of Utility

Theory

Utility theory is the study of
decision making under risk and
uncertainty among large groups of
participants with differing goals and
preferences [4]. A participant has
direct control over the decisions he
makes, but these decisions are only
indirectly linked to their outcomes,
which depend on the decisions of
other participants and random
chance.

Utility can be used to quantify the
goodness of states and actions in a
survivable system. System states can
be compared using utility measures
to determine which are preferred,
and as a result, which survival
actions should be taken in an
attempt to move the system to a
better state or avoid worse states. A
key aspect of measuring the utility
of a system state or administrative
action is that utility depends on both
the services that are currently
running and the future
configurations that can be reached.
Future configurations need to be
considered to differentiate between a
rigid configuration that offers good
current performance from a flexible
configuration that offers slightly
lower current performance but is
more resilient to faults and is more
likely to continue offering good
performance. A balance must be
reached between present
performance and future
performance. For example, for most
systems the potential configurations
a year in the future are not nearly as
important as the configurations the

continued on page 6

STN6

Survivability as a Component of Software Metrics
Continued from page 5

system could reach during the next
12 hours.

Applying Utility Theory

to Software Metrics

Every client receives a benefit from
every service it uses, expressed as a
utility function, U, that maps a
description of the service being
provided to a value received. The
service to be received can be
described in many ways, including
using quality of service (QoS)
concepts such as timeliness,
precision, and accuracy of the
results to be provided. Further,
utility itself can have multiple
definitions, depending on the overall
goals to be achieved. For example,
one utility function could value
maximizing the work performed,
another utility function could value
minimizing the likelihood that the
level of service provided falls below
some threshold, and a third utility
function could value minimizing the
probability that information is
divulged to an opponent. All are
equally valid, and depending upon
circumstances could in turn be
valued to different degrees. This
would result in a combined utility
function that is some aggregation of
the underlying utility functions.

The benefit a client receives from a
service is accrued only if the service
completes its task; i.e., an
instantaneous, ephemeral connection
to a service provides no value. Thus,
every benefit function must include
a duration over which the service
must be provided in order to attain
the specified benefit. Our analysis
restricts the duration to fixed size
discrete time intervals; a client
receives the benefit only if the
service is still being provided at
the end of the interval. We define

the utility of a configuration, U(c),
to be the aggregation across all
clients in a configuration of the
value of the services they receive.
Because there can be multiple utility
functions, we differentiate between
them using subscripts when
necessary; ergo, U

work
(c).

A configuration provides utility only
for tasks it completes. Since a
system that begins a time interval in
some configuration c may end it in
some other configuration that
provides a possibly different utility,
a more useful measure of utility is
the expected utility of a

configuration c, EU(c). EU(c)
measures the benefit of a collection
of potential configurations, C, that
can be reached from c in one time
interval. It is the probability
weighted sum of the utilities of each
individual configuration that can be
reached. The probability function,
P(c

i
), is the probability of c

i
 being

instantiated out of all the
configurations in the set.

Expected utility allows us to
compute the benefit expected to be
obtained from a configuration even
after considering the near term
negative events that can cause the
configuration to degrade. A second
utility measure allows us to consider
longer term changes to the system
and to incorporate the ability to
perform beneficial administrative
transformations. We call this net

utility, NU(c). Net utility measures
the fact that the long term

desirability of a configuration
depends upon the services that are
currently running and the future
configurations that can be reached.
Net utility is thus a sum of future
expected utilities. In general, not all
time periods are of equal
importance; the near term behavior
of a system is usually valued more
highly than behavior far into the
future. To handle this, we introduce
a discount function, D(t), which
maps from time to an appropriate
weighting factor. The discount
function is related to net present
value in finance.

The use of a discount factor has an
additional benefit, since it allows us
to discount far future states for
computational as well as policy
reasons. This has a practical
advantage, since when one projects
the configuration space further into
the future, the computations rapidly
become more expensive (due to
state explosion) and the results
rapidly become less precise (due to
imprecise estimates of event

probabilities). The
benevolent myopia
introduced by the
discount factor allows

us to ignore incomputable or
dubious future states.

Utility Metrics

The meaning and power of the
metrics defined above vary greatly
depending on the precise definition
of the base utility function U(c). As
noted, the base utility function
measures what is valued most
highly. We introduce two very
different utility metrics.

STN 7

Utility of Value is based on a
measure for aggregate performance.
This work developed from a market
based, distributed resource
allocation prototype. The goal of the
market was to maximize the
aggregate value of all the services
provided by the system. End users
or administrators would assign
values to services. The resources,
both hardware and software, would
compete to offer the best service at
the lowest cost. The resources’ goal
was to accumulate profits which
would be gathered by the owners of
the resources and allocated to end
users and administrators, closing the
loop. If users value a service highly,
it will replicate itself to assure that it
is highly available. If resources are
removed from the system, the prices
will rise and only the more valued
services will obtain resources; if
resources are added, prices will fall
and lower priority services will run.
Utility of Value implements a
simple microeconomic model that
tends toward Pareto Optimality, a
local optimality criterion. If the Net
Utility of Value is maximized, then
future performance of the system
will be maximized. There are many
possible definitions of survivability,
but a relatively straightforward one
is that the system continues to offer
good performance into the future.

Utility of Operation is based on a
binary measure depending on
whether the system meets some

minimal level of operation over a
given interval. This gives rise to a
very different notion of
survivability. Using this measure,
EU(C) is itself a probability: the
probability that the system is
operational. Maximizing the Net
Utility of Operation minimizes the
possibility of some catastrophic
failure in the future, possibly at the
cost of optimal average case
performance. This is arguably a
better survivability metric than the
Net Utility of Value, since the
purpose of survivability is to avoid
catastrophic failures. The two could
be used in conjunction so that after a
minimal level of service is
guaranteed, performance is
optimized for the normal case.

Examples:

Replica Balancing

There are two services, A and B, and
six hosts, 1 - 6. Each service can be
replicated and each replica requires
an entire host. There is a 10%
probability of failure of each host
during a period, so the probability of
success of a service with n replicas
is 1- 0.1n. In the initial
configuration, C1, each service has
three replicas: C1 = A{1, 2, 3}; B{4,
5, 6}. At step 2, B loses two
replicas, so C2 = A{1, 2, 3}; B{4}.
The third configuration, C3, is the
result of a possibly automatic
administrative action which trades a
second backup from A to provide a

single backup for B, C3 = A{1, 2};
B{4, 3}. This last transition is
voluntary. The administrator or
survivability service would take
whatever action seemed best.

Table 1 calculates the expected
utility for each configuration in the
example. A bar over the service
label in the State column (RC)
indicates the service is not
operational at the end of the period.
The second column is the value of
the configuration. The aggregation
function is simple addition, so if
both A and B are operational the
value of the configuration is 2000.
P(i) and E(i) show the calculation of
the expected utility of Ci, EU(Ci),
which is shown on the last row of
the table.

In C1 everything is running fine.
Out of a possible value of 2000 the
expected utility is 1998, almost
perfect. After the failures, the
expected utility drops to 1899
because of the uncertainty that B
will complete. C3 reflects the
administrative action of taking a
replica from A and giving it to B.
This increases the expected utility to
1980, a dramatic improvement
considering that no resources were
added.

Utility of Value vs. Utility of

Operation

The following illustrates the
difference between utility of value

continued on page 8

RC Value P(C1) E(C1) P(C2) E(C2) P(C3) E(C3)

AB 2000 .9980 1996 .8991 1798 .9801 1960

AB 1000 .0009 1 .0999 100 .0099 10

AB 1000 .0009 1 .0009 1 .0099 10

AB 0 .0000 0 .0001 0 .0001 0

1998 1899 1980

Table 1. Expected Utility

STN8

the expected value drops by about
150 reflecting B’s instability. C3
evaluates the administrative action
of removing a host from A to
increase B’s stability. In this case,
the action does not appear to be
desirable and would not be taken.
The reason is that removing a host
from A would cause it to drop from a
high level of QoS to a low level of
QoS at a cost of nearly 1000.

A Utility of Value metric maximizes
perceived performance and
maintains A at a high level of QoS is
consistent with this goal. However,
the survivability of the system is
sacrificed by this choice as Table 3
using Utility of Operation shows.

In the initial state all hosts are
operational and A is operating at the
high level. After the failures, B is
reduced to one replica and the
expected Utility of Operation drops
to .8991. A is still operating at the
high level, but this is not reflected in
the binary operational metric. Step 3
reflects the administrative action of
taking a host from A. This causes A
to drop from the high level to the
low level and increases the stability
of B. As a result the expected
operational utility increases to .9801.

Conclusions

The metrics presented allow
measurement of the useful work that
is likely to be done by software as
actually deployed and subject to the
various kinds of attacks and failures
that exist in the real world. These
metrics can be combined with more
traditional software metrics that
measure the likelihood of failure
due to software or specification
failure to produce a combined
metric that measures both the
quality of the code and its expected
long-term behavior in a realistic
environment.

About the Authors

David Wells, is Vice President of
Object Services and Consulting Inc.
and the head of software research.
Wells received his D. Eng. degree in
Computer Science from the
University of Wisconsin-Milwaukee
in 1980. He was Assistant Professor
in the Computer Science
Deptartment at Southern Methodist
University from 1980 to 1986 where
he conducted research in databases,
computer security, and computer
graphics.

Survivability as a Component of Software Metrics
Continued from page 7

RC Value P(C1) E(C1) P(C2) E(C2) P(C3) E(C3)

A
h
B 3000 .7283 2183 .6561 1968 .0000 0

A
l
B 2000 .2697 539 .2430 486 .9801 1960

AB 1000 .0010 1 .0729 73 .0099 10

A
h
B 2000 .0007 14 .0270 54 .0000 0

A
l
B 1000 .0003 0 .0009 1 .0099 10

AB 0 .0000 0 .0001 0 .0001 0

2739 2582 1980

Table 2. Utility of Value

continued on page 9

(which optimizes for performance)
and utility of operation (which
optimizes for stability). Service A
now has two levels of operation,
high and low. The high level offers a
value of 2000 and requires 3 hosts to
run. The low level is required for a
minimal level of operation and
offers a value of 1000 but requires
only 1 host to run. If the high level
of service cannot be maintained, it
automatically drops to the low level
of service. In the example A starts
out at the high level of QoS. If A
loses a host, it drops to the low level
of QoS with one replica. The
probability that A completes the
period at the high level is the
probability that all three hosts
complete. The probability that A
completes the period at the low level
is the probability that any single host
completes minus the probability that
A completes at the high level. There
are now 6 possible outcomes. B is
still worth 1000, so if A completes at
the high level along with B the value
is 3000.

Table 2 calculates the utility of
value. In the initial configuration all
hosts are operational and the
expected Utility of Value is nearly
optimal at 2739. After the failures,

STN 9

Dr. Wells was the Principal
Investigator on the DARPA/ITO
project Survivability in Object

Services Architectures. He was
previously PI on the DARPA funded
Open OODB and Open OODB II

projects at Texas Instruments where
he was the principal architect of a
modular object-oriented database
that seamlessly added persistence to
programming objects. Those
projects produced many of the ideas
of flexible service binding used in
this software survivability work.
Wells has also done work in
cryptography for databases and risk
assessment. Wells holds 5 patents
and has published over 20 technical
articles in journals and conferences.

RC Value P(C1) E(C1) P(C2) E(C2) P(C3) E(C3)

A
h
B 1 .7283 .7283 .6561 .6561 .0000 0

A
l
B 1 .2697 .2697 .2430 .2430 .9801 .9801

AB 0 .0010 0 .0729 0 .0099 0

A
h
B 0 .0007 0 .0270 0 .0000 0

A
l
B 0 .0003 0 .0009 0 .0099 0

AB 0 .0000 0 .0001 0 .0001 0

.9980 .8991 .9801

Table 3. Utility of Operation

David E. Langworthy performs
experimental computer science
research in both academic and
industrial contexts. He has ten years
experience in the design of scaleable
distributed systems with a focus on
object oriented database technology.

Langworthy received his PhD from
Brown University in May of 1995.

While completing his PhD,
Langworthy was a consultant at
Microsoft, and designed the
Information Retrieval system for the
Microsoft Network. This system
scaled to thousands of queries per
second using parallel arrays of NT
servers. The work resulted in
fundamentally new technology for
combined query evaluation.

References

[1] “Survivability in Object Services Architectures - 1998 Annual Report,” David Wells, Object Services and Consulting Inc.,
www.objs.com/Survivability/, 1998.

[2] DARPA/ITO Information Survivability Website, Defense Advanced Research Projects Agency,
www.darpa.mil/ito/research/is/, 1998.

[3] “Lazy Replication: Exploiting the Semantics of Distributed Services,” R. Ladin, B. Liskov, L. Shrira, Proceedings of the

Ninth Annual ACM Symposium on Principles of Distributed Computing, Quebec, 1990.

[4] Game Theory in the Social Sciences: Concepts and Solutions, Martin Shubik, MIT Press, Cambridge Massachusetts, 1982.

[5] “Survivability is Utility,” David Langworthy and David Wells, Object Services and Consulting, Inc.,
www.objs.com/Survivability/Utility.doc.

Other accomplishments include:
teaching a course in Object Oriented
Analysis and Design, developing
courseware, and consulting for
Semaphore and the Trilogy
Development Group.

Author Contact Information

David L. Wells

Object Services and Consulting, Inc.
Baltimore, MD

Phone: (410) 318-8938
Fax: (410) 318-8948

wells@objs.com

David E. Langworthy

Langworthy Associates
del@onr.com

http://www.dacs.dtic.mil/
mailto:wells@objs.com
mailto:del@onr.com
http://www.objs.com/Survivability/
http://www.darpa.mil/ito/research/is/
http://www.objs.com/Survivability/Utility.doc.

STN10

Using Models for Test Generation and Analysis
Mark R. Blackburn, Software Productivity Consortium

Introduction

Systems are increasing in
complexity. More systems perform
mission-critical functions, and
dependability requirements such as
safety, reliability, availability, and
security are vital to the users of
these systems. The competitive
marketplace is forcing companies to
define or adopt new approaches to
reduce the time-to-market as well
as the development cost of these
critical systems. Much focus has
been placed on front-end
development efforts, not realizing
that testing accounts for 40 to 75
percent of the lifetime development
and maintenance costs [3; 11].
Testing is traditionally performed at
the end of development, but
market-driven schedules often force
organizations to release products
before they are adequately tested.
The long-term effect is increased
warranty costs due to product’s poor
reliability and poor quality.

Model-based development tools are
increasing in use because they
provide tangible benefits by
supporting simulation and code
generation, in addition to the
traditional design and analysis
activities. These tools help users
develop requirements and
design models of target systems.
Certain tools are based on
formal models, and the
underlying models are
represented using specification
languages. Such formal
specifications provide a basis
for test case generation.
However, the underlying
development models are
generally not represented in a
form that supports automatic

continued on page 11

test case generation. The key
challenge is to translate
development-oriented modeling
languages into a form that is suitable
for automated test vector generation,
specification-based test coverage
analysis, requirement to test
traceability, and design-to-test
traceability.

Using Models for Testing

and Analysis

Figure 1 illustrates a conceptual view
for using models to support test
generation and analysis. Models and
their associated tools typically provide
various views of the system under
development. When modeling tools
are based on precise semantics, user
models can also support:

• Test Vector Generation. A test
vector includes inputs, expected
outputs, and an association with
the specification from which it
was derived.

• Static Analysis. Typically used to
determine if there are
contradictions in specification.

• Dynamic Analysis. Analysis based
on execution of the model.

Modeling tools are beginning to
support simulation and code
generation. Simulation of a model
can help developers assess the
correctness of the model with
respect to user requirements;
however, it can be time consuming
to develop the simulation data
required for thorough dynamic
analysis. Automatically generated
test vectors can provide a cost
effective way to exercise a model in
a simulator using the boundary
values associated with the
constraints of a model specification;
it is at the boundaries where model
anomalies are typically discovered.
In addition, these same test vectors
can also be used to test the code in a
host or target environment.

Scope

This article describes the use of
automated test generation and
analysis from specification models.
Through the integration of
commercial off-the-shelf (COTS)
model development and test
generation tools, a process has been

Copyright (c) 1998 Institute of Electrical and Electronics Engineers. Reprinted, with permission, from the Proceedings of Digital System Conference 1998.

Figure 1. Using Models for Test Generation and Analysis

STN 11

continued on page 12

developed that eliminates most of
the traditional testing activities. This
approach has been demonstrated to
identify many types of specification
errors prior to any implementation.
This article is based on experiences
in developing two model translators
[4; 5] supporting:

• Software Cost Reduction (SCR)
[12] /Consortium Requirements
Engineering Method (CoRE) [18]
for modeling requirements

• Real-Time Object-Oriented
Modeling (ROOM) [17] method
for analysis and design

For each respective method and
associated tool, the translators
produce a specification that is used
by the T-VEC tool system to
generate test vectors and perform
specification-based test coverage
analysis. The model transformation
process is briefly described using a
specification example. The article
summarizes the results of applying
the process and tools to industrial
applications.

Models and

Specifications

Formal specifications provide
simple abstract descriptions of the
required behaviors describing what
the software should do. Because
formal specifications have, in the
past, been considered difficult to
use, they have not been widely used.
Recent advances in visual
model-based development tools
provide the basis for developing
formal specifications while hiding
the formalism.

It has been commonly accepted that
formal specifications provide a basis
for test case generation.
Goodenough and Gerhart may have

been the first to claim that testing
based only on a program
implementation is fundamentally
flawed [8]. Gourlay developed a
mathematical framework for
specification-based testing [10].
Figure 2 graphically represents
Gourlay’s mathematical framework
for testing and the key relationships
between specifications, tests, and
programs. Given a specification

that describes the requirements for
some system, there are one or more
programs that implement the
specification. Tests are derived from
the specification; if every test
executed by a program computes
the appropriate expected results
(i.e., passes every test), there is
some level of confidence that the
program satisfies the specification.

In Figure 2, the specification
symbol (i.e., rounded rectangle) is
generically used to represent
requirement, design, or test
specifications. Certain specification
languages have tool support that
helps in developing complete and
consistent specifications. Such tools
provide the syntactic and semantic
rigor that is required for
transforming
specifications into a
form suitable for test
vector generation.
Model-based
specification methods
that support functional,
state transition, and
event based techniques
are increasing in
popularity and use
because the tool support has helped
make them easier to use1.

A model-based specification

approach constructs an abstract
model of the system states and
characterizes how a state is changed

by abstract or concrete operations
(paraphrased from Cohen et al. and
Cooke et al. [7; 6]). Operations in
the system are specified by defining
the state changes or events that
affect the model using existing
mathematical constructs like sets or
functions. State transitions define
relationships between sequences of
states based on conditions of the
system state. Event specifications

define certain conditions related to a
change in the system state1.

A test specification model is
defined by a set of test specification
elements, as shown in Figure 3 on
page 12. A test specification

element is an input-to-output
relation and an associated constraint
defined by a conjunction (i.e.,
logically ANDed) of
Boolean-valued relations that define
constraints on the inputs associated
with the input-to-output relation.

Given a specification element, a test

vector is a set of test input values
derived from the constraint, and an
expected output value derived from
the input-to-output relation with
respect to the test input values [1].

Informally, from a test generation
perspective, a specification is
satisfiable if at least one test vector
exists for every specification
element [2].

Figure 2. Testing Model and Relationships

Specification Specification Program

Tests

Satisfies

Derived from
Passes every

test

○

○

○

○

○

○

○

○

1 Zave and Jackson [21] identify potential implementation bias of model-oriented techniques but support the claim that model-oriented techniques are gaining
in popularity.

STN12

Using Models for Test Generation and Analysis
Continued from page 11

continued on page 13

Model Transformation

Model transformations are typically
required to transform model-based
specifications into a form to support
test generation. Hierons describes
rewriting rules for Z specifications

[13] to support test case generation,
but does not address specifications
composed of combinations of
specification techniques, particularly
specifications composed using event
specification techniques. In general,
model transformation to support tool
interoperability is an important area
of investigation [9].

Blackburn [5] describes a tool based
approach for transforming a
model-based specification into a
form that supports test vector
generation. The model-based
specification supports composition
using function, state, and event
specifications. A translator
implements rules for transforming
SCR model specifications into a
language used by the T-VEC test
vector generation tool. The
development of the prototype

translator and evaluation
environment helped identify
shortcomings in the rules described
in prior work that was presented at
the 1997 Computer Assurance
Conference [2].

Similar model
transformation efforts,
not described in this
article, were performed
for the ROOM method
using the Object Time
Developer tool set as
part of the validation
environment[4].

Evaluation

Environment

Figure 4 identifies
generic tool types that
are related to the
elements of the test
model shown in Figure
2. Such tools use or
produce the three
primary types of system

artifacts (i.e., specifications,
programs, and tests). A specific
instance of this model was
created to support the model
transformation approach using
the SCR tool (referred to as
SCR* - pronounced SCR star)
as the source for model-based
specifications and the T-VEC
tool system as the tool that
supports test generation and
specification-based coverage
analysis.

SCR*, developed by the Naval
Research Laboratory, supports
modeling and analysis of
requirement specifications using a
formal modeling language (i.e., a
language with well-defined syntax
and semantics).

T-VEC,developed by T-VEC
Technologies, Inc. supports:

• Test Vector Generation. A test
vector generator produces test
vectors from test specifications.

• Specification-Based Coverage

Analysis. This tool analyzes the
transformed specification to
determine whether all
specification elements have a
corresponding test vector. This is
the mechanism used to assess
satisfiability of the transformed
specifications.

Applications and

Results

The remainder of this article
describes a simple example to
illustrate the use of this approach for
model analysis and testing. Consider
the example of an electronic
regulator, shown in Figure 5. The
requirements for the regulator are:

• When the temperature reaches the
High zone (i.e., 180 degrees), the
valve opens.

• The amount the valve opens is a
function of the temperature from
120 degrees (closed) up to 300
degrees (fully open).

Figure 4. Tools of the Evaluation

Environment

Figure 3. Representation of Test

Specification Model

STN 13

• Once the valve is open, it remains
open until the temperature reaches
the Low zone (i.e., 120 degrees).

The specification is described in the
SCR tabular notation. Heitmeyer, et
al. [14] describes the SCR method.
The specifications are defined in two
parts. The first part of the spec-

ification defines the relationships
between the temperature and the
associated modes that relate to the
temperature zones. This is referred
to as the Sensor Mode Table shown
in Figure 5. The system can be in
one of three modes: LOW, READY,
and HIGH. At the time when the
temperature becomes greater than
the constant Low (i.e., 120 degrees),
the system transitions into the mode
READY. The formal expansion of
the event is:

@T(Temp >= Low) means:

if the previous value of Temp

denoted NOT(_Temp >= Low) and the

new value of Temp >= Low then the

event is true and the mode

transitions from LOW to READY

Table 1 shows the translated
meaning for each event specification
of the Sensor Mode Table. For each
constraint, there is a minimal set of
tests as shown in Table 2. The

T-VEC test generation system
uses a test selection heuristic
based on domain testing theory
where low-bound and
high-bound values are selected
for each constraint2. For
example, the first test selects the
low-bound value for the
previous state value of_TEMP3

(-100), which is less than the
constant Low, and selects a
value of 120 for the next state
value of TEMP. For the
high-bound selection, the value
of 119 (i.e., one less that the

constant Low) is selected for
_TEMP, and 179 for TEMP (i.e.,
one less than the constant High).

The second part of the

specification defines the constraints
and functions for the Value
Condition Table shown in Figure 5.

This table depends on the Sensor
Mode Table. The Valve Condition
Table is interpreted as follows:

if Sensor mode = High then

Valve = 255-(Max_Temp-Temp

* 255/(High-Low))

else if Sensor mode = LOW

or Sensor mode = READY then

Valve = 0

endif

Each SCR output variable and
associated function map to a T-VEC
functional relationship of an output
variable with respect to the
constraints on the input variables.
The SCR model does not necessarily
define a system state strictly in
terms of constraints on the input
variables as is required for T-VEC.
For example, the Sensor mode is
defined in terms of a mode
transition table. This results in table
dependencies as illustrated in Figure
6. The mode variables and the
associated table relations must be
transformed into constraints on the
input variables.

Figure 5. Example of Electronic

Regulator

2 White and Cohen proposed domain testing theory as a strategy to select test points to reveal domain errors [19]. Their theory is based on the premise that if
there is no coincidental correctness, then test cases that localize the boundaries of domains with arbitrarily high precision are sufficient to test all the points in
the domain. When there is a strong correlation between the specification constraints and implementation paths, the selected test data should uncover
computation and domain errors. As defined by Howden and refined later by Zeil, a computation error occurs when the correct path through the program is
taken, but the output is incorrect due to faults in the computation along the path. A domain error occurs when an incorrect output is generated due to executing
the wrong path through a program [15; 20].
3 An underbar (_) precedes the variable name to indicate that the variable represents the previous state variable before the event versus the next state variable
after the event.

Table 1. Relationship of Translated Constraints

Events Translation

@T(TemD >= Low) (Temp >= Low) AND (Temp < Low)

@T(Temp >= High) (Temp >= High) AND (Temp < High)

@T(Temp < Low) (Temp < Low) AND (_Temp >= Low)

Table 2. Tests for Each Translated Constraint

Output Inputs

Translation Sensor Sensor Temp _Temp

(Temp >= Low) AND READY LOW 120 -100

(Temp < Low) READY LOW 179 119

(Temp >= High) AND HIGH READY 180 120

(Temp < High) HIGH READY 300 179

(Temp >= Low) AND LOW HIGH -100 180

(Temp < Low) LOW HIGH 119 300

continued on page 14

STN14

Figure 6 provides a perspective of
the example SCR specification
represented in a form that is
compatible with the test model
shown in Figure 3. The constraint

for the Valve Condition Table
includes the conditions of the Valve
table and the Sensor Mode transition
table. This means that the constraint:

(Temp >= High) AND (_Temp < High)

must be satisfied (i.e., the Sensor
mode is HIGH) as a requirement for
the value to be computed using the
functional relationship:

1) 255-(Max_Temp-Temp

2) * 255/(High-Low))

In general, mode transition tables
can have dependencies on other
terms and modes. Events for modes
and terms create the need to identify
the previous and next state variable
dependencies. As shown in
Figure 6, the Sensor Mode
table depends on both the
previous and next state input
value of Temp; similarly the
condition table Valve
depends on the previous and
next states of variables
Temp and Sensor.

A test specification requires
the constraints of a
specification to be defined
strictly in terms of the input
and output variables. A
model-based approach

Using Models for Test Generation and Analysis
Continued from page 13

defines states that are relations of
inputs, terms, or state variables (e.g.,
Sensor, _Sensor). This allows the
constraint/precondition and
functional relationship (defined in

terms of a Condition Table) to be
defined as a relation on inputs,
states, or terms. This approach
typically simplifies the task of
specifying behavior, but it is the
key reason why a model
transformation process is
required.

Static Analysis

Static analysis helps determine
whether there are contradictions

in the model without executing the
model. Contradictions exist if
constraints cannot be satisfied. This
is typically the most common
problem, especially when the
dependencies of specifications
become large. This example is a
simple 2-level dependency problem,
but typical systems can have 10 or
more dependency levels. It is also
possible to identify functional
relationships that specify values that
are inconsistent with the domain of
the output variables. These are
analogous to computation errors in
the code.

Figure 6. Dependency Relationship

Consider the function to compute
the Valve function. The
requirements are that as the
temperature reaches the maximum
temperature (i.e., 300 degrees), the
valve should be completely opened,
and when the value reaches the
constant Low (i.e., 120 degrees), the
valve should be closed.
Electronically controlled devices
typically use some type of digital
value to represent a fully open valve
(in this case 255 - an 8-bit unsigned
integer), and the value should be 0
when the valve is closed. It is
common for implementors to make
errors in scaled arithmetic
conversions. To illustrate this point,
the computation has two errors.

Figure 7 shows a sample test vector
that has identified a problem in the
computation. A warning is appended
to the expected output because the
computation is out of range. This is
typically an indication that there is a
computation error in the
specification or that there are
missing constraints on the inputs.
The original expression (line 1 of
the functional relationship under
Figure 6) is missing parentheses
around Max_Temp-Temp. In line 2,

continued on page 15

Figure 7. Internal Form of Test Vector with Warning

Indicates output out of range

Valve<<1>>, RP__1<<1>>
OUTPUT
Valve FLOAT 32 720.0 {0.00..255.0} “WARNING: VALUE OUTSIDE EXPECTED RANGE”
INPUT
Sensor ENUMERATION 32 3 HIGH {LOW..HIGH}
Temp INTEGER 32 180 {-100..300}
_Sensor ENUMERATION 32 3 READY {LOW..HIGH}
_Temp INTEGER 32 120 {-100..300}
JUSTIFICATION {
SOLUTION : 1
STATE_SPACE_SCAN : OFF
SWITCHES : LEAST_RECENT, LOW_BOUND, SINGLE, OPPOSITE
DCP : 1
Valve, Valve_FR_1, cv_Valve_RP_1, Valve_RP_1, Valve_RP_0
Sensor_LS, Sensor<<2>>, Sensor_FR_2, Sensor_RP_2, Sensor_RP_0, Sensor_Valve_2

}

STN 15

the subtraction should be
Max_Temp-Low rather than
High-Low. The correct
computation is as follow:

255-((Max_Temp-Temp) * 255/

(Max_Temp-Low))

Identifying this type of problem
is time consuming. In addition, it
is well known that identification and
removal of errors in the
implementation or integration phase
is much more costly than it is during
the requirements phase.

Figure 8 provides a summary of a
minimal set of test values for the
translated condition table for Valve.
In this figure, the associated test
selection mode (i.e, LOW_BOUND,
HIGH_BOUND) is also shown.

Sample Results

Table 3 shows some sample results
on the application of this approach
to other systems. Each specification
originally had one or more
specification problems or
anomalies. As seen in Figure 5, the
electronic regulator problem is very
small (two tables, five functional
relationships, six constraints, and a
maximum depth of two table
dependencies). A flight guidance
system is a real-world industrial
problem [16]; it has 78 tables, 423
functional relationships, 7,349
constraints, and a maximum
dependency depth of 12. The results
on this project are planned for
publication in the next year.

Summary

Software testing will play a role in
the development of software
systems for some time to come.
Although testing can account for 40
to 75 percent of the lifetime
development and maintenance costs,
the results summarized in this
article provide promising evidence
that the use of test automation to

Output Inputs Test Selection

Mode Conditions Valve Sensor _Sensor Temp _Temp Mode

HIGH TRUE FALSE 85.00 HIGH READY 120 -100 LOW_BOUND

255.00 HIGH READY 179 119 HIGH_BOUND

LOW, FALSE TRUE 0.00 LOW HIGH -100 180 LOW_BOUND

READY 0.00 LOW HIGH 119 300 HIGH_BOUND

0.00 READY LOW -100 180 LOW_BOUND

0.00 READY LOW 119 300 HIGH_BOUND

Figure 8. Test Vectors for Valve Condition Table

support the manually intensive test
generation and model-based analysis
is feasible and practical.

There is a great need to demonstrate
and integrate new and advanced
technologies. This article describes
an environment developed to
validate the use of model-based
translators on real-world
applications. The environment
integrates model-based development
tools with a specification-based test
vector generator and
specification-based coverage
analyzer.

As modeling tools and associated
methodologies continue to evolve,
these results provide the basis for
building translators for other
modeling tools. This allows new
tooling technology to be integrated
with existing tools and has the
indirect effects of reducing the cost
and time of specialized training and
tool expenditures.

The ability to integrate front-end
development tools with back-end

System/ Condition Event Mode Functional

Projects Table Table Table Relationship Constraint Level

Temperature

regulator 1 1 5 6 2

Safety injection 1 1 1 10 68 3

Electronic flight

instrumentation

system 37 5 0 88 389 3

Elevator system 10 6 0 38 90 3

Flight Guidance

system 49 15 14 423 7349 12

Table 3. Sample Results Statistic

testing tools fosters the use of
model-development tools, and such
tools can significantly reduce the
maintenance phase of a product,
which typically consumes 70 percent
of the product life cycle.
Maintenance typically requires
minimal development effort but
typically large efforts in testing.
Because the original developers
usually are not available to assist in
maintenance and evolution efforts,
test automation can significantly
minimize reverification efforts
because the designer’s requirement
and design knowledge is captured in
model specifications.

About the Author

Mark R. Blackburn, Ph.D., is the
President of T-VEC Technologies,
Inc. and co-inventor of the T-VEC
system, an advanced specification
and verification environment.
Blackburn has eighteen years of
software systems engineering
experience in development, project
leadership and applied research in

continued on page 16

STN16

Using Models for Test Generation and Analysis
Continued from page 15

References

[1] Blackburn, M.R., R.D. Busser, “T-VEC: A Tool for Developing Critical System,” Proceeding of the Eleventh

International Conference on Computer Assurance, Gaithersburg, Maryland, pages 237-249, June, 1996.

[2] Blackburn, M.R., R.D. Busser, J.S. Fontaine, “Automatic Generation of Test Vectors for SCR-Style Specifications,”
Proceeding of the 12th Annual Conference on Computer Assurance, Gaithersburg, Maryland, pages 54-67, June, 1997.

[3] Beizer, B., Software Testing Techniques, New York, New York: Van Nostrand Reinhold, 1983.

[4] Blackburn, M.R., J.S. Fontaine, “Specification Transformation to Support Automated Testing,” TR SPC-97036-MC,
Version 02.00.01, Software Productivity Consortium, March 1998.

[5] Blackburn, M.R., “Specification Transformation and Semantic Expansion to Support Automated Testing,” Ph.D.
Dissertation, George Mason University, 1998.

[6] Cooke, D., A. Gates, E. Demirors, O. Demirors, M. Tankik, B. Kramer, “Languages for the Specification of Software,”
Journal of Systems Software, 32:269-308, 1996.

[7] Cohen, B., W. T. Harwood, M.I. Jackson, The Specification of Complex System, Addison-Wesley, Great Britain, 1988.

[8] Goodenough, J. B., S. L. Gerhart, “Toward a Theory of Test Data Selection,” IEEE Transactions on Software

Engineering, 1(2):156-173, 1975.

[9] Gill, D. H., “Formal Methods for Software Evolution, Solicitation,” Defense Advanced Research Projects Agency,
BAA 98-1O, November 1997

[10] Gourlay, J.S., “Introduction to the Formal Treatment of Testing, Software Validation,” Proceeding of the Symposium on

Software Validation, 1983.

[11] Ghiassi, M., K.I.S. Woldman, “Dual Programming Approach to Software Testing,” Software Quality Journal, 3:45 58, 1994.

[12] Heninger, K., “Specifying Software Requirements for Complex Systems: New Techniques and Their Application,”
IEEE Transactions on Software Engineering, 6(1):2-13, 1980.

[13] Hierons, R. M., “Testing from a Z Specification,” Journal of Software Testing, Verification and Reliability, 7:19-33, 1997.

[14] Heitmeyer, C., R. Jeffords, B. Labaw, “Automated Consistency Checking of Requirements Specifications,”
ACM TOSEM, 5(3):231-261, 1996.

[15] Howden, W.E., “Reliability of the Path Analysis Testing Strategy,” IEEE Transactions on Software Engineering,
2(9):208-215, 1976.

[16] Miller, S., “Specifying the Mode Logic of a Flight Guidance System in CoRE and SCR,” Accepted to the Second
Workshop on Formal Methods in Software Practice (FMSP’98), Clearwater Beach, Florida, March, 1998.

[17] Selic, B., G. Gullekson, P.T. Ward, Real Time Object-Oriented Modeling. New York, New York: John Wiley & Sons, 1994.

[18] Software Productivity Consortium, Consortium Requirements Engineering Guidebook, SPC-92060-CMC, version
01.00.09. Herndon, Virginia, 1993.

[19] White, L.J., E.I. Cohen, “A Domain Strategy for Computer Program Testing,” IEEE Transactions on Software

Engineering, 6(3):247-257 May, 1980.

[20] Zeil, S.J., “Perturbation Techniques for Detecting Domain Errors,” IEEE Transactions on Software Engineering,
15(6):737-746, 1989.

[21] Zave, P., M. Jackson, “Four Dark Corners of Requirements Engineering,” ACM Transactions on Software Engineering

and Methodology, 6(1): 1-30, 1997.

specification-based testing, object
technology, requirement and design
specification, formal methods, and
formal verification.

Mark is currently Chief
Technologist at the Software
Productivity Consortium where his
current assignment includes the
development of a specification-
based test automation framework;

he is developing a generalized
specification-based testing model
and language that is being used to
support translators for four
specification-based methods and
associated tools (two requirement
specification methods, a real-time
OO design specification method,
and a hybrid structured/object-based
design method). He has also been

involved in applied research and
advanced technology
demonstrations in web-based
knowledge engineering, domain
engineering, reverse engineering of
programs to specifications, object
technology, formal methods
approaches to high assurance,
requirement specification and
model-based verification.

http://www.dacs.dtic.mil/

STN 17

Task-Based Software Testing
Daniel G. Telford, MacAulay Brown, Inc.

Introduction

There is a plethora of software
testing techniques available to a
development team. A survey by
Zhu, et. al.[1] identified over 200
unit testing techniques. However,
for the services’ operational test
agencies, there has been a
continuing, unanswered question of
how to test software’s impact on a
system’s mission effectiveness. I
propose a task-based approach as
part of an integrated test strategy in
an effort to answer this long-
standing question.

Why Test?

From a speech by Lloyd K.
Mosemann II, at the time the Deputy
Assistant Secretary for the Air Force
(Communications, Computers, and
Support Systems) [2], a customer’s
concerns are:

They want systems that are on-

time, within budget, that satisfy

user requirements, and are

reliable.

A report from the National Research
Council[3] refines the latter two
concerns in his statement by
presenting two broad objectives for
operational testing:

1. to help certify, through
significance testing, that a
system’s performance satisfies
its requirements as specified in
the ORD and related documents,
and

2. to identify any serious
deficiencies in the system design
that need correction before full
rate production

Following the path from the system
level to software, these two reasons
are consistent with the two primary
reasons for testing software or

software intensive systems [4,5,6].
Stated generically, these are:

1. test for defects so they can be
fixed, and

2. test for confidence in the software

The literature often refers to these as
“debug” and “operational” testing,
respectively [4]. Debug testing is
usually conducted using a
combination of functional test
techniques and structural test
techniques. The goal is to locate
defects in the most cost-effective
manner and correct the defects,
ensuring the performance satisfies
the user requirements. Operational
testing is based on the expected
usage profile for a system. The goal
is to estimate the confidence in a
system, ensuring the system is
reliable for its intended use.

Task-Based Testing

Task-based testing, as I define it
here, is a variation on operational
testing. It uses current DoD
doctrine and policy to build a
framework for designing tests. The
particular techniques are not new,
rather it leverages commonly
accepted techniques by placing them
within the context of current DoD
operational and acquisition
strategies.

Task Analysis

Task-based testing, as the name
implies, uses task analysis. Within
the DoD, this begins with the
Uniform Joint Task List [7] and, in
the case of the Air Force, is closely
aligned with the Air Force Task List
(AFTL) [8]. The AFTL “…provides

a comprehensive framework for all

of the tasks that the Air Force

performs.” Through a series of
hierarchical task analyses, each unit
within the service creates a Mission

Essential Task List (METL). The
Mission Essential Tasks (METs) are
“…only those tasks that represent

the indispensable tasks to that

particular organization.”

METLs, however, only describe
“what” needs to be done, not “how”
or “who.” Further task
decomposition identifies the
system(s) and people required to
carry out a mission essential task.
Another level of decomposition
results in the system tasks (i.e.
functions) a system must provide.
This is, naturally, the level in which
developers and testers are most
interested. From a tester’s
perspective, this framework
identifies the most important
functions to test by correlating
functions against the mission
essential tasks a system is designed
to support.

This is distinctly different from the
typical functional testing or “test-to-
spec” approach where each function
or specification carries equal
importance. Ideally, there should be
no function or specification which
does not contribute to a task, but in
reality there are often requirements,
specifications, and capabilities
which do not or minimally support a
mission essential task. Using task
analysis, one identifies those
functions impacting the successful
completion of mission essential
tasks and highlights them for
testing.

Operational Profiles

The above process alone has great
benefit in identifying what functions
are the most important to test.
However, the task analysis above
only identifies the mission essential

continued on page 18

STN18

tasks and functions, not their
frequency of use. Greater utility can
be gained by combining the mission
essential tasks with an operational
profile—an estimate of the relative
frequency of inputs that represent
field use. This has several benefits:

1. “…offers a basis for reliability

assessment, so that the developer

can have not only the assurance

of having tried to improve the

software, but also has an

estimate of the reliability

actually achieved.” [4]

2. “…provides a common base for

communicating with the

developers about the intended

use of the system and how it will

be evaluated.” [3]

3. “When testing schedules and

budgets are tightly constrained,

this design yields the highest

practical reliability because if

failures are seen they would be

the high frequency failures.” [3]

The first benefit has the advantage
of applying statistical techniques,
both in the design of tests and in the
analysis of resulting data. Software
reliability estimation methods such
as those in [5] and [9] are available
to estimate both the expected field
reliability and the rate of growth in
reliability. This directly supports an
answer to the long-standing question
about software’s impact on a
system’s mission effectiveness as
well as answering Mr. Mosemann
II’s fourth concern a customer has
(is it reliable).

Operational profiles are criticized as
being difficult to develop. However,
as part of its current operations and
acquisition strategy, the DoD
inherently develops an operational
profile. At higher levels, this is
reflected in such documents as the

Task-Based Software Testing
Continued from page 17

continued on page 19

Analysis of Alternatives (AOA), the
Operational Requirements
Document (ORD), Operations Plans,
Concept of Operations (CONOPS),
etc. Closer to the tester’s realm is
the interaction between the user and
the developer which the current
acquisition strategy encourages.
The tester can act as a facilitator in
helping the user refine his or her
needs while providing insight to the
developer on expected use. This
highlights the second benefit above
the communication between the
user, developer, and tester.

The third benefit is certainly of
interest in today’s environment of
shrinking budgets and manpower,
shorter schedules (spiral
acquisition), and greater demands on
a system. Despite years of
improvement in the software
development process, one still sees
systems which have gone through
intensive debug testing (statement
coverage, branch coverage, etc.) and
“test-to-spec,” but still fail to satisfy
the customer’s concerns as stated by
Mr. Mosemann II. By involving a
customer early in the process to
develop an operational profile, the
most needed functions to support a
task will be developed and tested
first, increasing the likelihood of
satisfying the customer’s four
concerns.

Task-Based Software

Testing

Task-based software testing, as
defined herein, is the combination of
a task analysis and an operational
profile. The task analysis helps
partition the input domain into
mission essential tasks and the
system functions which support
them. Operational profiles, based
on these tasks, are developed to
further focus the testing effort.

Integrated Testing

Operational testing is not without its
weaknesses. As a rather obvious
example of this, one can raise the
question, “What about a critical
feature that is seldom executed?”
Operational testing, or task-based
testing as defined herein, does not
address such questions well. Debug
testing, with the explicit goal of
locating defects in a cost-effective
manner, is more suited to this.

Debug Testing

Debug testing is “…directed at

finding as many bugs as possible, by

either sampling all situations likely

to produce failures (e.g., methods

informed by code coverage or

specification criteria), or

concentrating on those that are

considered most likely to produce

failures (e.g., stress testing or

boundary testing methods).” [4]
Zhu’s, et. al. [1] survey of unit
testing methods are examples of
debug testing methods. These
include such techniques as statement
testing, branch testing, basis path
testing, etc. Typically associated
with these methods are some criteria
based on coverage, thus they are
sometimes referred to as coverage
methods. Debug testing is based on
a tester’s hypothesis of the likely
types and locations of bugs.
Consequently, the effectiveness of
this method depends heavily on
whether the tester’s assumptions are
correct.

If a developer and/or tester has a
process in place to correctly identify
the potential types and locations of
bugs, then debug testing may be
very effective at finding bugs. If a
“standard” or “blind” approach is
used, such as statement testing for

STN 19

its own sake, the testing effort may
be ineffectual and wasted. A subtle
hazard of debug testing is that it
may uncover many failures, but in
the process wastes test and repair
effort without notably improving the
software because the failures occur
at a negligible rate during field use.

Integration of Test Methods

Historically, a system’s developer
relied on debug testing (which
includes functional or “test-to-spec”
testing). Testing with the
perspective of how the system
would by employed was not seen
until an operational test agency
(OTA) became involved. Even on
the occasions when developmental
test took on an operational flavor,
this is viewed as too late in the
process. This historical approach to
testing amplifies the weaknesses of
both operational and debug testing.
I propose that task-based software
testing be accelerated to a much
earlier point in the acquisition
process. This has the potential of
countering each respective method’s
weaknesses with the other’s
strengths. This view is supported by

the current philosophy in the test
community, to develop a combined
test force spanning contractor,
developmental, and operational test
(CT/DT/OT).

Summary

Task-based software evaluation is a
combination of demonstrated,
existing methods (task analysis and
operational testing). Its strength lies
in matching well with the DoD’s
current operational strategy of
mission essential tasks and the
acquisition community’s goal to
deliver operational capability
quickly. By integrating task-based
software testing with existing debug
testing, the risk of meeting the
customer’s four concerns (on-time,
within budget, satisfies
requirements, and is reliable) can be
reduced.

Caveat

The success of the process presented
herein, like so many of the processes
presented in the software
engineering community, is only a
proposal at this point. However, as

pointed out earlier, many of the
individual components of task-based
software testing are not new and
have been shown effective both in
the literature and in the author’s
personal experience. Task-based
software testing is an approach of
taking established methods and
techniques and matching them
against the current DoD operations
and acquisition strategy.

About the Author

Daniel G. Telford is a systems
engineer for MacAulay Brown, Inc.,
a support contractor for the U.S. Air
Force. Prior to beginning a second
career at MacAulay Brown, he
completed a career as an officer in
the U.S. Air Force with experience
in field operations, operational test,
and acquisition.

Author Contact Information

Daniel G. Telford

MacAulay Brown, Inc.
11728 Linn Ave. NE, Suite B

Albuquerque, NM 87123

dan.telford@macb.com

References

[1] Hong Zhu, Patrick A.V. Hall, and John H.R. May, “Software Unit Test Coverage and Adequacy,” Communications of the

ACM, Volume 29, #4, December 1997.

[2] Lloyd K. Moseman II, Deputy Assistant Secretary of the Air Force for Communications, Computers, and Support
Systems. Speech to the Software Technology Conference, Salt Lake City, UT, 1994.

[3] Michael L. Cohen, John E. Rolph, and Duane L. Steffey, editors, Statistics, Testing, and Defense Acquisition: New

Approaches and Methodological Improvements, National Academy Press, Washington, D.C., 1998.

[4] Phyllis Frankl, Dick Hamlet, Bev Littlewood, and Lorenzo Strigini, “Evaluating Testing Methods by Delivered
Reliability,” IEEE Transactions on Software Engineering, 24 (8), 1998.

[5] Michael A. Friedman and Jeffrey M. Voas, Software Assessment: Reliability, Safety, Testability, John Wiley & Sons, 1995.

[6] Little Book of Testing, Vol I and II, Computers and Concepts Associates, under contract to the Software Program
Managers Network, 1998.

[7] “Chairman of the Joint Chiefs of Staff Manual (CJCSM) 3500.04A, Universal Joint Task List.”

[8] “Air Force Doctrine Document 1-1, Air Force Task List,” 12 August 1998.

[9] Michael R. Lyu, editor, Handbook of Software Reliability Engineering, IEEE Computer Society Press, McGraw-Hill, 1996.

http://www.dacs.dtic.mil/
mailto:dan.telford@macb.com

STN20

Thread-Based Integration Testing: Lessons Learned from an Iterative Approach
William M. Borgia, Neil J. Hrdlick, Northrop Grumman Corporation

Introduction

Our organization has recently
completed the development of a
large-scale command and control
system through the implementation
and formal qualification phases of
the project. This development
involved over eighty software
engineers developing roughly 1.5
million source lines of code using
multiple languages and platforms.
In order to deliver the product
within the projected schedule,
parallel development and rapid
integration occurred over many
related software functional areas. To
facilitate the decomposition of our
design into manageable components
we chose the concept of a
“functional thread” as the
elementary building block for
integration. In this context, a
“functional thread” is defined as a
logical execution sequence through
a series of interfacing software
components resulting from or
ending in the receipt of a message,
event or operator interaction.

Threads not only serve as the basis
for integration, they also tend to
drive the entire software
development effort from scheduling
to status reporting. Each thread
itself represents a microcosm of the
system in that each has a
documented definition and general
execution path, an internal design
and an associated test. Thread
definition intends to communicate
functional background and
execution details between
developers and from developers to
testers. More importantly, the
desired independence of threads
supports incremental integration
and system testing while the
corresponding thread definition
substantiates the results. Finally,

since all system development
activity progresses in relation to
threads, management has an
accurate method of judging the
status of individual tasks, functional
areas and requirements.

Threads

Keeping the goals of iterative
development and testing in mind,
each thread has its own lifecycle
with autonomous states and a
formal process for state transitions
(see Figure 1). Individual team
leaders usually decompose general
requirements into groups of threads
at the beginning of formal, six
month software builds and assign
threads to developers. Developers
maintain ownership of their threads
and are responsible for documenting
a scenario under which an integrator
can verify the basic functionality,
providing rudimentary definition to
the thread. Following
implementation and unit test, the
developer releases the
corresponding software components
to a daily integration build, at which
point the thread enters a “testable”
state. After verifying the
functionality in the integration
build, the developer marks the
thread “ready” for an integrator who
performs more extensive testing and
eventually “integrates” the thread
and corresponding software
components into the system. At the
end of each formal build, a team of
key engineers in conjunction with
quality assurance checks all threads
against requirements as a regression
test and “finalizes” those threads
which pass.

While the development team
originally tracked threads manually,
we quickly developed a shared
database application to serve as a

continued on page 21

Figure 1. Thread State

Transition Diagram

STN 21

central repository for thread
development, maintenance and
tracking. The database provides a
formal mechanism for defining and
documenting threads, changing
thread status and reporting status to
project management. Moreover, the
database manages references
between threads: threads can serve
as preconditions to other threads and
developers may incorporate thread
test steps from previous threads.
Most importantly, the interface helps
enforce the process by
demonstrating the autonomy of
thread status and establishing clearly
defined responsibilities among
developers and testers.

Thread Test Steps

Thread test steps and other
background information from the
database serve as a contract between
developers and integrators.
Integrators use thread test steps as a
simple scenario to identify the scope
of a thread rather than as a rigid test
case that may only rubber-stamp a
developer’s unit test. Consequently,
the integrators are responsible for
developing several execution
scenarios within the boundaries of
the thread and applying appropriate
testing mechanisms such as known
exceptional cases and boundary
checking. Furthermore, the
integration team often stresses
exercising subsystem interfaces
during integration testing, which
was an area that thread steps often
overlooked.

In addition to helping formalize the
implementation process, the thread
testing approach standardizes the
integration testing process as well.
As a result, the number of detected
coding errors increased almost 250
percent over three formal builds
after thread testing had been
introduced. Although errors

attributable to integration doubled
during the first formal build during
which our group used threads, that
number has subsequently dropped to
almost fifty percent below the level
at which we started using threads.

While thread-based development
certainly contributes greatly to the
main goals of early, rapid integration
and iterative development, we have
also identified several potential
areas of further process
improvement. Perhaps most notably,
developers and testers shared
concerns that thread scope lacked
uniformity among subsystems. At
times, thread definitions were far
too specific and a conscientious
integrator could verify the basic
functionality in fewer steps than the
developer identified. Likewise,
developers sometimes defined
threads at too high a level, requiring
the integrator to seek further
information from the developer to
ensure a meaningful test. A thread
review process, perhaps as part of a
design walk through, may answer
this problem. Likewise, we
recommend requiring completion of
a code walk through as a
prerequisite to thread completion
due to the implications of walk
through initiated design and code
changes.

Thread Maintenance

A related area of improvement is
thread maintenance. While the
process encouraged (and the
database supported) threads
referencing other threads,
maintaining consistency was not
always an easy task. Furthermore,
while software that composes a
thread often changes after a thread
has been integrated, there is no
formal update process for the thread.
The changes to process here are
obvious and one could modify the

tool to help enforce these concerns.
For example, the tool would benefit
from the ability to attach references
to source code units so that changes
to code might trigger the need for
associated thread changes.

In this project the thread process
focused on the integration activities
rather than the full development
lifecycle. This is certainly the main
difference between our thread-based
approach and use-case analysis. The
thread database requires references
to user interface specifications
where applicable, but the process
did not link the thread directly to the
requirements database. Thus
software testing and overall system
testing were somewhat disjoint in
that system testers found it difficult
to use the thread database as a
reference when creating test cases.
Though it might be desirable to shift
thread definition to the requirements
analysis phases of the project, such
analysis usually occurs at a higher
level than what we had used for our
threads and almost always span
subsystem boundaries. Instead we
suggest a more hierarchical
approach to thread definition rooted
in requirement-based parent threads.

This would directly link the
software thread repository to system
requirements and better facilitate a
similar iterative approach to system-
wide testing. Finally, by linking
threads directly to requirements,
project management would have
better insight about the status of
entire requirements.

Since threads drove the software
efforts and status, developers
viewed threads as the most visible
formal process in place. The
simplicity of the process, accurate
status and integration efficiency

continued on page 22

The people that bring you

this publication, the

DoD Software Tech News

Editorial Board Members

Lon R. Dean, Editor,

DoD Software Tech News

ITT Industries

Paul Engelhart

DACS COTR

Air Force Research Laboratory
Information Directorate/IFTD

Elaine Fedchak

ITT Industries

Morton A. Hirschberg,

Editorial Board Chariman

Information Science &
Technology Directorate,

US Army Research Laboratory
(Retired)

Thomas McGibbon,

DACS Director

ITT Industries

Marshall Potter

DDR&E (IT)

Dan Snell,

DACS Deputy Director

ITT Industries

Nancy L. Sunderhaft

ITT Industries

Thread-Based Integration Testing
Continued from page 21

About the Authors

William M. Borgia received a B.S.
in computer science from Truman
State University in Kirksville,
Missouri.

He currently serves as a software
engineer for command and control
systems at Northrop Grumman
Electronic Sensors and Systems
Sector in Baltimore, Maryland.

Neil J. Hrdlick received a B.S. in
computer science from the
University of Maryland and a M. S.
in computer science from The Johns
Hopkins University.

As a fellow engineer at Northrop
Grumman Electronic Sensors and
Systems Sector in Baltimore,
Maryland, he serves as software
technical director for command and
control systems.

Author Contact Information

William M. Borgia

Northrop Grumman Corporation
Electronic Sensors & Systems Sector

Mailstop B320
Box 17320

Baltimore, MD 21203
(410) 993-2875

Borgia@acm.org

 Neil J. Hrdlick

Northrop Grumman Corporation
Electronic Sensors & Systems Sector

Mailstop B320
Box 17320

Baltimore, MD 21203
(410) 765-1578

Neil_j_hrdlick@mail.northgrum.com
http://sensor.northgrum.com/

The Software Tech News is a publication
of the DoD Data & Analysis Center for
Software (DACS). The DACS is a
DTIC Sponsored Information Analysis
Center (IAC) and the DoD Software
Information Clearinghouse. The DACS
is operated by ITT Industries, Systems
Division and technically managed by
Air Force Research Laboratory -
Information Directorate (AFRL/IF).

STN22

contributed to the development
team’s acceptance of the process and
enthusiasm to suggest
improvements. In addition, the
empirical results suggest that the
introduction of thread-based testing
exposed design and coding errors
earlier and attributed fewer errors to
the integration process itself,
probably due to the enhanced
communication between developers
and testers. In short, our method
appears to have synchronized the
notion of task completion among
developers, testers and management.

Summary

Thread-based integration testing
played a key role in the success of
this software project. At the lowest
level, it provided integrators with
better knowledge of the scope of
what to test, in effect a contract
between developers and testers. At
the highest level, it provided a
unified status tracking method and
facilitated an agreement between
management and the developers as
to what would be delivered during
each formal build. Furthermore,
instead of testing software
components directly, it required
integrators to focus on testing
logical execution paths in the
context of the entire system.
Because of this, it strongly
supported the goals of early, rapid
integration coupled with an iterative
development approach. In summary,
the thread approach resulted in
tangible executable scenarios
driving development and integration
while the autonomous, well-defined
thread states strengthened the use of
threads as an accurate method of
scheduling and tracking status.

mailto:ldean@dacs.dtic.mil
mailto:Borgia@acm.org
mailto:Neil_j_hrdlick@mail.northgrum.com
http://sensor.northgrum.com/

Software Tech News on the World Wide Web

This newsletter, including referenced full-length

articles, is available on the web at:

www.dacs.dtic.mil/awareness/newsletters/listing.shtml

Other Software Testing On-line Resources

DoD DACS Software Testing Topic Area - www.dacs.dtic.mil

DoD Software Tech News - Topic: Testing Part 1 -
 www.dacs.dtic.mil/awareness/newsletters/stn3-2/toc.html

AFOTEC Air Force Operational Test and Evaluation Center -

Director, Test, Systems Engineering & Evaluation - www.acq.osd.mil/te/

IEEE Test Technology, Technical Council - www.computer.org/tab/tttc/tac/home.html

International Software Quality Week Conferences (QWE) - www.soft.com/QualWeek/

Software Research Institute- www.soft.com

Software Testing Institute - www.ondaweb.com/sti/

STORM: A nexus of Software Testing Online Resources - www.mtsu.edu/~storm/

STSC Software Testing Page - www.stsc.hill.af.mil/swtesting/index.asp

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 120 ROME NY

POSTAGE WILL BE PAID BY ADDRESSEE

DATA & ANALYSIS CENTER FOR SOFTWARE

P.O. BOX 1400

ROME, NY 13449-0138

To Update Your Mailing

Information:

on the web at:

www.dacs.dtic.mil/forms/

userform.shtml

or contact:

Lon R. Dean,

Software Tech News Editor

ITT Industries, Systems Div
775 Daedalian Drive

Rome, NY 13441-4909
(800) 214-7921

(315) 334-4965 Fax
ldean@rome.ittssc.com

http://www.dacs.dtic.mil/forms/userform.shtml
http://www.dacs.dtic.mil/databases/url/key.hts?keycode=2399
http://www.dacs.dtic.mil/awareness/newsletters/listing.shtml
http:// www.dacs.dtic.mil/awareness/newsletters/stn3-2/toc.html
http://www.acq.osd.mil/te/
http://www.computer.org/tab/tttc/tac/home.html
http://www.soft.com/QualWeek/
http://www.soft.com/
http://www.ondaweb.com/sti/
http://www.mtsu.edu/~storm/
http://www.stsc.hill.af.mil/swtesting/index.asp
mailto:ldean@rome.ittssc.com

DoD Data & Analysis Center for Software
P.O. Box 1400
Rome, NY 13442-1400

Return Service Requested

First-Class Mail
U.S. Postage

P A I D
Colo. Spgs., CO
Permit No. 745

Free Newsletter Subscription Card !!
Please Fill Out Completely.

I wish to receive this software technology newsletter

Name ___

Title ___

Company ___

Address ___

City ________________________________ State ________

Zip Code ________________ Country ______________________

E-mail ___

Telephone _____________________ Fax ____________________

Please remove my name from your mailing list.

Comments: __

__

Are you reading someone else’s Software Tech News?

To register for this FREE newsletter or to update your mailing address,

 fill out this card.

